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The Godunov-Inverse Iteration: A Fast and 
Accurate Solution to the Symmetric 

Tridiagonal Eigenvalue Problem 

Anna M. Matsekh a,1 

&Institute of Computational Technologies, Siberian Branch of the Russian 
Academy of Sciences, Lavrentiev Ave. 6, Novosibirsk 630090, Russia 

Abstract 

We present a new hybrid algorithm based on Godunov’s method for computing 
eigenvectors of symmetric tridiagonal matrices and Inverse Iteration, which we call 
the Godunov-Inverse Iteration Algorithm. We use eigenvectors computed according 
to Godunov’s method as starting vectors in the Inverse Iteration, replacing any non- 
numeric elements of the Godunov eigenvectors with random uniform numbers. We 
use the right-hand bounds of the Ritz intervals found by the bisection method as 
Inverse Iteration shifts, while staying within guaranteed error bounds. In most test 
cases convergence is reached after only one step of the iteration, producing error 
estimates that are as good as or superior to those produced by standard Inverse 
Iteration implementations. 

Key words: Symmetric eigenvalue problem, tridiagonal matrices, Inverse Iteration 

1 Introduction 

Construction of algorithms that enable to find all eigenvectors of the symmet- 
ric tridiagonal eigenvalue problem with guaranteed accuracy in O(n2) arith- 
metic operations has become one of the most pressing problems of the modern 
numerical algebra. QR method, one of the most accurate methods for solv- 
ing eigenvalue problems, requires 6n3 arithmetic operations and O(n2) square 
root operations to compute all eigenvectors of a tridiagonal matrix [Golub and 
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Loan (1996)l. Existing implementations of the Inverse Iteration (e.g. LAPCK 
version of the Inverse Iteration xSTEIN [Anderson et al. (1995)] and EISPACK 
version of the Inverse Iteration TINVIT [Smith et al. (1976)], require O(n2) 
floating point operations to find eigenvectors corresponding to well separated 
eigenvalues, but in order to achieve numerical orthogonality of eigenvector a p  
proximat ions corresponding to clustered eigenvalues, reorthogonalization pro- 
cedures, such as Modified Gram-Schmidt process, are applied on each step of 
Inverse Iteration, increasing worst case complexity of the algorithm to O(n3) 
operations. Typically Inverse Iteration for symmetric tridiagonal problem re- 
quires only three-five iteration steps [Wilkinson (1965), Smith et al. (1976), 
Anderson et al. (1995)l before convergence is achieved, but it tends to be very 
sensitive to the choice of the shift. If very accurate eigenvalue approximation 
is used as the Inverse Iteration shift convergence may not be achieved since 
shifted matrix in this case is nearly singular. To deal with this problem small 
perturbations are usually introduced in the shift parameter to avoid iteration 
breakdown, but as a rule the choice of such a perturbation is arbitrary, which 
may affect accuracy of the resulting eigenvectors. 

Recently there have been attempts to construct hybrid procedures based on 
the Inverse Iteration method. In 1997 Inderjit Dhillon proposed an O(n2) algo- 
rithm for the symmetric tridiagonal eigen-problem [Dhillon (1997)] based on 
the LDLT factorizations and Inverse Iteration, although without the formal 
proof of the correctness of the algorithm. Much earlier, in 1985, S. K. Godunov 
and his collaborators [Godunov et al. (1988), Godunov et al. (1993)l proposed 
a two-sided Sturm sequence based method that enables to determine all eigen- 
vectors of tridiagonal symmetric matrices with guaranteed accuracy in O(n2)  
floating point operations. The use of the two-sided Sturm sequences allows to 
avoid accuracy loss associated with rounding errors in the conventional Sturm 
sequence based methods. The algorithm gives provably accurate solutions to 
the symmetric tridiagonal eigenvalue problem on a specially designed floating 
point arithmetics with extended precision and directed rounding [Godunov 
et al. (1988)) Unfortunately in IEEE arithmetics eigenvectors, computed ac- 
cording to Godunov’s algorithm are susceptible to division by zero and over- 
flow errors, while for closely clustered interior eigenvalues it produces nearly 
collinear eigenvectors, taking no measures for ‘reorthogonalization. In empirical 
studies Godunov’s method, direct method by it’s nature, consistently delivers 
residuals that are approximately two orders of magnitude larger than those of 
the eigenvectors computed according to some of the Inverse Iteration imple- 
mentations. 

In the attempt to overcome shortcomings of both Godunov’s method and 
Inverse Iteration we constructed a new hybrid procedure for computing eigen- 
vectors of symmetric tridiagonal unreduced matrices which we call Godunov- 
Inverse Iteration method. Godunov-Inverse Iteration can be viewed as Go- 
dunov’s method with iterative improvement. It uses eigenvectors computed 
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from the two-sided Sturm sequences as starting vectors in the Inverse Iter- 
ation. One step of the Inverse Iteration is usually sufficient to get desirable 
accuracy and orthogonality of the eigenvectors. This is in contrast to LA- 
PACK version of the Inverse Iteration xSTEIN [Anderson et al. (1995)] which 
uses randomly generated starting vectors and requires three-five steps for con- 
vergence and EISPACK version of the Inverse Iteration TINVIT [Smith et al. 
(1976)] which uses direct solution to the tridiagonal problem as a starting vec- 
tor in the Inverse Iteration and requires up to five steps for convergence. By 
choosing right-hand bounds of the the smallest machine presentable eigenvalue 
intervals, found by the bisection algorithm, as shifts in the Godunov-Inverse 
Iteration, instead of eigenvalue approximation (midpoint of this interval) we 
insure that that iteration matrix won't be numerically singular, and the per- 
turbation does not exceed error bounds for the corresponding eigenvalue. 

This paper is organized as follows. In section 2 we give a formal description 
of the symmetric eigenvalue problem. In section 3 we give an overview of the 
original version of the Godunov's method. In section 4 we discuss shortcom- 
ings of the Godunov's method and present improved version of the method 
which we call Godunov-Inverse Iteration Algorithm. We implemented and 
tested Godunov-Inverse Iteration, Godunov's method, as well as Inverse Iter- 
ation with random starting vector (LAPACK approach) and Inverse Iteration 
with starting vector found as a direct solution of the eigenproblem (EISPACK 
approach). In section 5 we compare the quality of the'eigenvectors computed 
with these four methods on a tridiagonal, dense and sparse test matrices. 
Throughout the paper we assume that symmetric eigenvalue problems with 
matrices having arbitrary structure can be reduced to tridiagonal form with 
orthogonal transformations, which preserve spectral properties of original ma- 
trices to machine precision [Golub and Loan (1996)l. 

2 Formulation of the Problem 

Consider the fundamental algebraic eigenvalue problem, in which 

for real symmetric matrices A E R"'". There always exists a real orthogonal 
transformation W E R""" such that matrix A is diagonalizable [Wilkinson 
(1965)], that is, 

where eigenvalues Xi, i = 1, .  . . , n are all real. We solve problem (1) with a real 
symmetric matrix A with arbitrary structure according to the Rayleigh-Ritz 
procedure [Godunov et al. (1988), Godunov et al. (1993)l that is, we 

WTAW = diag(Xi), (2) 
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(i) compute orthonormal transformation Q such that matrix T = QTAQ is 

(ii) solve eigenproblem Tu = pu 
(iii) take (p ,  Qu) as an approximation to the eigenpair (A, z) 

t ridiagonal 

3 Godunov's Method 

Godunov's method [Godunov et al. (1988), Godunov et al. (1993)] was de- 
signed to  compute eigenvectors of unreduced symmetric tridiagonal matrices 
by a sequence of plane rotations on a specially designed architecture that 
supports extended precision and directed rounding. Godunov eigenvector a p  
proximation ui corresponding to the eigenvalue pi E (a i ,Pi)  such that 

of the matrix 

T =  

is found recursively from the two-sided Sturm sequence Pk(pi), i, k = 1,. . . , n, 
by letting 

(4) 
uo i = 1 and ui = -u~--lsign(bk-l)/Pk-l(pi) 

in just O(n)  operations per a normalized eigenvector. Two-sided Sturm se- 
quence 

is constructed from the left-sided and right-sided Sturm sequences Pz (ai), k = 

0,.  . . , n - 1 and P , ( p i ) ,  k = n - 1, .  . . , 0. Left-sided Sturm sequence @(ai) 
is computed from the minors of the matrix T - ai1 according to the formu- 
las [Godunov et al. (1988)l 

while right-sided Sturm sequence PL(pi) is computed from the minors of the 
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matrix T - pi1 as follows [Godunov et al. (1988)l: 

Although analytically equivalent, in finite precision eigenvectors constructed 
from the left-sided and the right-sided Sturm sequences for the same parameter 
X in general are different. An eigenvector with guaranteed accuracy is obtained 
when left and right hand sequences (5) are joint at an index 1 chosen according 
to the rule based on the Sturm theorem: for any real XO the number of roots X of 
the k-th principal minor of the matrix T - X I ,  such that X < Xo coincides with 
the number of non-positive values in the Sturm sequence P ( X i ) k ,  k = 1,. . . , n. 
Let 1+ be the number of non-positive elements in the sequence @(ai), k = 

0,. . . , n - 1, and n - 1 - 1- be the number of non-negative elements in the 
sequence PF(pi), k = n - 1, . . . , 0. Then left and right sequences (5) are joint 
at the index 1 = 1+ = 1- for which the following condition is satisfied [Godunov 
et al. (1988)l: 

(G+(&i) - G-(Pi)>(l/G;l(Pi) - 1/G:l(a L 0 (8) 

Resulting two-sided Sturm sequence (5) is used to recursively compute Go- 
dunov eigenvectors (4). 

4 Godunov-Inverse Iteration Algorithm 

In our attempt to improve Godunov’s method we were motivated by the fact 
that it is a direct method, and due to the rounding errors in finite precision 
theoretical error bound for the eigenvectors computed to according to the 
Godunov’s method [Godunov et al. (1988)l: 

II(T - bkI)?&ll2 5 13hfmach IIT112 llUIc112 (9) 

is not achieved. At the same time two-sided Strum sequence computations 
are susceptible to division by zero and overflow errors, while for closely clus- 
tered interior eigenvalues it produces nearly collinear eigenvectors, taking no 
measures for reorthogonalization. In empirical studies it consistently deliv- 
ered residuals that were approximately two orders of magnitude larger than 
those of the eigenvectors computed by Inverse Iteration with random start- 
ing vectors. In addition, due to the rounding errors, machine representation 
of the matrix T ,  that is generally obtained by either Householder or Lanczos 
tridiagonalization, has the form Tmach = T + G [Wilkinson (1965)], where 

llGll L kJn2- t  (10) 
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and t is the number of mantissa bits in the machine representation of floating- 
point numbers. Therefore in finite precision error bound (9) rather takes the 
following form: 

We constructed Godunov-Inverse Iteration to avoid common computational 
problems arising in both Godunov’s and Inverse Iteration methods. It can be 
viewed as an algorithm that deliverers reorthogonalized iteratively improved 
Godunov eigenvectors. Instead of initiating Inverse Iteration with a random 
vector, or solving a linear system to find a starting vector, as it is customary 
in the implementations of the Inverse Iteration, we use Godunov eigenvector, 
computed in just O(n)  arithmetic operations as an extremely accurate starting 
vector in the Inverse Iteration. Before Inverse Iteration is applied, any non- 
numeric elements of the Godunov eigenvectors are substituted with random 
numbers. This semi-deterministic approach to finding initial vectors to the 
Inverse Iteration reduces the number of steps necessary for convergence to 
desired accuracy. In most cases convergence is achieved after one step of Inverse 
It eration. 

Inverse Iteration may break down when very accurate eigenvalue approxima- 
tions X are used as shifts, because shifted iteration matrix 

A - X I ,  (12) 

in this case is nearly singular (here I is an identity matrix). To avoid this, small 
perturbations are usually introduced into the shift X to assure convergence to 
the corresponding Ritz vectors. But even small arbitrary deviations of the 
Ritz values from exact eigenvalues may produce significant deviations of Ritz 
vectors from the actual eigenvectors. We solve this problem by using the right- 
hand bounds & of the eigenvalue intervals 

found by the bisection algorithm (either Sturm based [Godunov et al. (1988)l 
or inertia-based [Fernando (1998)] versions of the bisection algorithm) as ac- 
curate shifts that are guaranteed to be within the error bounds (3). We apply 
Modified Gram-Schmidt reorthogonalization for the eigenvector approxima- 
tions corresponding to multiple eigenvalues or to the clustered eigenvalues with 
small relative gaps. We use Wilkinson’s stopping criteria [Wilkinson (1965)] 

to verify that convergence is achieved. Below we present formal description of 
the Godunov-Inverse Iteration Algorithm. 



Algorithm 1 (Godunov-Inverse Iteration) 
Compute eigenvectors ui, i = 1,. . . , n of the tridiagonal matrix T = TT E 
I p l X "  with main diagonal d and codiagonal b on an architecture with machine 
precision emaCh and t mantissa bits. 

godunov-inverse-iteration(d, b, n) 

find eigenvalues pi E (ai, Pi) by the bisection method s.t. 
[Pi - Qil I Gnach IIT112, i = 1, - * ,  7-L 

k = 0, 6 = 2t/(100 * n) 

for (i = l , i  <= n,i + +) 
compute two-sided Sturm sequence P, (pi):  

compute Godunov eigenvector uz: uf = 1, 
for (IC = 2, k <= n, k + +) 

ut = -ut_,sign(bi-1)/Pz-l(pi) 
if ut is not a machine number 
then set ub to a random uniform number from (0 , l )  

Ti = Pi 

if ( I C  > 0 flI"/i - Ti41  L 10 Gna& ITil) 
then Ti = Ti-1 + 10G7%achITiI 

IC=k+l  
Solve (T - -yil)zk = uf' 

for ( j = l , j < = k , k + + )  

then z k  = z k  - ( z k ,  z j )z j  

do 

if Irj -%I  I llT11,/1000 

end 
u; = x"/llx"/2 

while (IIzkll, > 6) 
end 
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5 Experimental Results 

We implemented and tested Godunov’s method, Godunov-Inverse Iteration 
Algorithm 1, Inverse Iteration algorithm with random starting vectors which 
we call Random Inverse Iteration algorithm (our implementation of the LA- 
PACK procedure xSTEIN [Anderson et al. (1995)]), and Inverse Iteration 
algorithm with initial vectors found as a direct solution to the eigenprob- 
lem, which we call Direct Inverse Iteration algorithm (our implementation of 
the EISPACK procedure TINVIT [Smith et al. (1976)]), in ANSI C (GNU C 
compiler) in IEEE double precision and tested these programs on an Intel@ 
XeonTM CPU 15OOMHz processor. 

To make fair comparison we compute eigenvalue approximat ions only once 
and use these eigenvalues to compute eigenvectors using four different rou- 
tines, while in all three Inverse Iteration implementations we use the same 
direct solver for systems of linear algebraic equations with tridiagonal sym- 
metric matrices. We use Householder tridiagonalization with dense matrices 
and restarted Lanczos procedure with selective reorthogonalization with sparse 
matrices. 

Following Godunov [Godunov et al. (1988)l we implemented bisection algb 
rithm to find intervals (a i ,P i )  containing eigenvalues pi of the tridiagonal 
matrix T with guaranteed accuracy 

where emach is the unit roundoff error. Bisection algorithm requires O(tn2) 
operations, where t is the number of bits of precision in a computer represen- 
tation of floating point numbers. 

Intervals (ai, Pi) were used in the original Godunov’s method and in the new 
Godunov-Inverse Iteration procedure, while in the Random Inverse Iteration 
and Direct Inverse Iteration versions of the algorithm pi = (ai + pi)/2 is 
used as the i-th eigenvalue approximation. In all of the tests presented below 
Godunov-Inverse Iteration procedure converged to desired accuracy in just 
one step, while the results were at the least as accurate as the ones obtained 
with the Random Inverse Iteration and Direct Inverse Iteration algorithms. 

Test Example 1 %diagonal symmetric eigenproblem € 2 ~  = Ax, 
A(R) =-cosk.rr/(n+l), k = l ,  . . . ,  n. 

The problem of finding eigenvalues and eigenvectors of tridiagonal symmetric 
matrices with zero main diagonal, in so called Golub-Kahan form [ Fernando 
(1998)], which arise in singular value computations for bidiagonal matrices, 
and generally for nonsymmetric matrices, presents a number of computational 
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R =  

Fig. 1. Matrix R and its eigenvalues i ( R )  computed by the bisection method for n 
= 1000. 

0 0.5 0 

0.5 0 ‘ a .  

. . .  . . .  . . .  

* . .  ... 0.5 

Godunov’s Method 1.1535e - 12 2.9458e - 11 - 

Direct Inverse Iteration 4.3392e - 12 1.0000e + 00 1 

Random Inverse Iteration 2.3845e - 16 1.0000e + 00 3 

Godunov - Inverse Iteration 2.3461e - 16 1.1138e - 14 1 
Table 1 
Error estimates of the eigenvectors X = I ~ k l k = l , . . , , ~  of R, corresponding to the 
eigenvalues i computed with maximum absolute deviation A(X) = 3.3307e - 16 
from the exact eigenvalues X for n = 1000. 

Godunov’s Method 2.0175e - 12 4.8817e - 11 - 

Direct Inverse Iteration 5.9213e - 12 8.2479e - 11 1 

Random Inverse Iteration 2.7556e - 16 2.2042e - 14 3 

Godunov - Inverse Iteration 2.6821e - 16 1.0969e - 14 1 
Table 2 
Error estimates of the eigenvectors X = I ~ k l k = l , . . . , ~  of R, corresponding to the 
eigenvalues i computed with maximum absolute deviation A(X) = 4.9960e - 16 
from the exact eigenvalues X for n = 1000. 

challenges. In this test example we compare eigenvectors computed with the 
Godunov-Inverse Iteration method against eigenvectors computed according 
to Godunov’s method, and Direct and Itandom Inverse Iteration algorithms 
for the same approximations of the eigenvalues of the 1000 x 1000 tridiagonal 
matrix R which has zero diagonal elements and elements equal 0.5 on the codi- 
agonals. Eigenvalues of this matrix coincide with zeros of Chebyshev polynomi- 
als of second kind, and so we were able to compare analytical solution against 
eigenvalues computed with our bisection routine. Test results for this exam- 
ple are summarized in the Tables 1 and 2. For the eigenvalue approximations 
computed with maximum absolute deviation of 3.3306690738754696e - 16 
(Table 1) from the analytical solution some of the Direct Inverse Iteration 
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and Random Inverse Iteration eigenvectors X did not converge and were set 
to zero, which is indicated by the fact that the basis orthogonality measure 
llXTX - 111, equals 1 in these tests. 

Godunov’s method and Direct Inverse Iteration produced eigenvector approx- 
imations that were accurate only to 12 digits of machine precision, yet Go- 
dunov’s eigenvectors satisfied orthogonality measure to 11 digits of precision. 
In just one step of iterative improvement Godunov-Inverse Iteration produced 
eigenvectors that satisfied original problem to 16 digits of machine precision, 
just as Random Inverse Iteration solution did after three iteration steps. In 
addition Godunov-Inverse Iteration solution satisfied orthogonality measure 
IJXTX - 111, to 14 digits of machine precision. 

When eigenvalues were computed with slightly lower precision (with maximum 
absolute deviation of 4.9960036108132044e - 16 from the analytical solution; 
results presented in the Table 2) all three versions of the Inverse Iteration 
converged to high accuracy, and again Godunov-Inverse Iteration converged in 
only one step to virtually the same high accuracy as Random Inverse Iteration 
in three steps. Clearly traditional Inverse Iteration implementations appear to 
be very sensitive to the accuracy with which eigenvalue approximations are 
computed, while Godunov-Inverse Iteration exhibits robust behavior. 

Test Example 2 Dense symmetric eigenproblem Ux = Ax. 

0 . 0 7 5  

l / ( i  + j  - 1) i = j { -1/(2 + j  - 1) i # j 
uij = 

- 0 . 0 2 5  

-0.05 

Fig. 2. Matrix U and its eigenvalues i ( U )  computed by the bisection method for 
n = 100. 

Il(UX - Xdiag(ik)II, llXTX - 111, #item 
8.0955e - 12 - 

Direct Inverse Iteration ’ 9.018e - 14 1.272e - 11 1 

Godunov’s Method 5.6394e - 13 

Random Inverse Iteration 1.5853e - 15 2.8498e - 15 3 

Godunov - Inverse Iteration 1.7410e - 15 2.7848e - 15 1 
‘l’able 3 
Error estimates of the eigenvectors X = [ ~ k l k = l , . . . , ~  of U, corresponding to the 
eigenvalues computed with maximum absolute deviation A(A) = 8.8818e - 16 
from the exact eigenvalues X for n = 100. 
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In this test example we compare Godunov's method, Godunov-Inverse Itera- 
tion, Random Inverse Iteration and Direct Inverse Iteration on an eigenvalue 
problem with a dense symmetric 100 x 100 matrix U which was derived from 
the Hilbert matrix: U has elements equal l/(i + j - 1) on the main diago- 
nal and off-diagonal elements equal -l/(i + j - 1). This is an example of a 
matrix with clustered eigenvalues which makes a good demonstration of the 
capabilities of both Godunov and Godunov-Inverse Iteration algorithms. Go- 
dunov and Inverse Iteration procedures were applied to the tridiagonal matrix 
obtained from the matrix U by Householder reduction. Test results for this ex- 
ample are summarized in the Table 3: here we see again that Godunov-Inverse 
Iteration solution satisfied original problem and orthogonality condition to 15 
digits of machine precision in one step, virtually the same results as Random 
Inverse Iteration produced in three steps. Godunov's method and Direct In- 
verse Iteration delivered errors about two orders of magnitude higher than 
Godunov-Inverse Iteration and Random Inverse Iteration. 

Test Example 3 Block-diagonal symmetric eigenproblem Px = Ax, 
X(P) = c ~ + 2 ~ c o s i . ; r r / ( f i + ~ ) + 2 c ~ c o s j . ; r r / ( f i + 1 ) ,  i, j =  1 ,..., m. 

P =  

Fig. 3. Matrix P and its eigenvalues i ( P )  computed by the bisection method for 
c2 = 1, co = -0.33, c1 = -0.17 and n = 225. 

n = 225, cg = 1 

A(X> 1.1103e - 15 4.4409e - 16 

II(PX - Xdiag(&)ll, 1.2757e - 15 6.1249e - 16 

llXTX - 111, 3.7040e - 15 7.9675e - 15 

n = 100, c2 = 0.5 

Table 4 
Error estimates of the eigenvectors X = Ixklk=l, . . . ,n of P with Q = -0.33,cl = 
-0.17, corresponding to the eigenvalues x computed with maximum absolute devi- 
ation A(X) from the exact eigenvalues X by Godunov-Inverse Iteration method. 

In this test example we provide results of the Godunov-Inverse Iteration pro- 
cedure used to solve sparse symmetric eigenproblem Px = Xz, that was trans- 
formed to the equivalent tridiagonal problem by Lanczos method with selec- 
tive reorthogonalization. Matrix P E Rnxn, n = m2 is a version of the matrices 
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arising in the finite difference approximations of the Laplacian on a rectangle. 
It has tridiagonal m x m blocks on the main diagonal and codiagonals located 
m columns and m rows apart from the main diagonal. This is a very common 
test example with a known analytical solution and makes a good illustration of 
the correctness of our routines. Test results for this example are summarized 
in the Table 4: for n = 100, Q = -0.33, c1 = -0.17, c2 = 0.5 original problem 
was satisfied to 16 digits and orthogonality condition to 15 digits of precision. 
For n = 2 5 , ~  = -0.33, c1 = -0.17, c2 = 1 errors were in the order of 

6 Conclusions 

Godunov’s method for real symmetric matrices produces accurate eigenvec- 
tor approximations, but usually these vectors have fewer digits of precision 
than eigenvectors computed according to some of the Inverse Iteration imple- 
mentations. Designed for unreduced matrices for computations on a specially 
designed architecture, in IEEE arithmetics in double precision Godunov’s 
met hod produces almost collinear eigenvectors corresponding to closely clus- 
tered eigenvalues, and may even produce non-numeric output. At the same 
time the choices of the initial vector in the Inverse Iteration algorithms do 
not guarantee that starting vector has a nontrivial component in the direction 
of the solution, and the algorithms do not always converge. Inverse Iteration 
is very sensitive to the accuracy of the shift - we show that for eigenvalues 
computed by the bisection method with guaranteed accuracy in the order of 
machine precision Inverse Iteration algorithms used in the LAPACK in EIS- 
PACK packages may break down. 

Godunov-Inverse Iteration was designed to solve these problems. Changing 
any non-numeric components of the Godunov eigenvectors to random uni- 
formly distributed numbers, we apply Inverse Iteration to these vectors, which 
usually achieve desired error bounds in one step, in contrast with other im- 
plementations of the Inverse Iteration algorithm which require a few more 
steps to achieve the same accuracy. This is most advantageous in the case 
of closely clustered eigenvalues when large fraction of the eigenvectors has to 
be reorthogonalized - since Godunov-Inverse Iteration method requires only 
one iteration step, reorthogonalization routine is applied only once. Godunov- 
Inverse Iteration is very robust with respect to the choice of the Inverse Iter- 
ation shift - we use right-hand bounds of the eigenvalue intervals computed 
by the bisection method as extremely accurate shifts in the Godunov-Inverse 
Iteration. We resort to reorthogonalization within the iteration only in cases 
of multiple or closely clustered eigenvalues. As a result Godunov-Inverse It- 
eration Algorithm produces accurate and robust solutions to the symmetric 
eigenvalue problem with higher accuracy than Godunov’s method and in fewer 
steps than existing implementations of the Inverse Iteration algorithm. 

12 



7 Acknowledgments 

I’d like to thank Professor Sergei Godunov for an insightful discussion of this 
project. I would also like to thank my adviser Professor Ella Shurina, and my 
team leader at LANL Michael Pernice for valuable comments on drafts of the 
paper. 

References 

Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Croz, J. D., 
Greenbaum, A., Hammarling, S., McKenney, A., Ostrouchov, S., Sorensen, 
D., 1995. LAPACK Users’ Guide, 2nd Edition. SIAM, Philadelphia. 

Dhillon, I. S., 1997. A new o(n2) algorithm for the symmetric tridiagonal eigen- 
value/eigenvector problem. Ph.D. thesis, University of California, Berkeley, 
available from h t t p :  //www . cs . berkeley . edu/-inderj it/. 

Fernando, K. V., 1998. Accurately counting singular values of bidiagonal ma- 
trices and eigenvalues of skew-symmetric tridiagonal matrices. SIAM Jour- 
nal on Matrix Analysis and Applications 20 (2)) 373-399. 

Godunov, S. K., Antonov, A. G., Kiriljuk, 0. P., Kostin, V. I., 1988. Guaran- 
teed Accuracy in the Solution of SLAE in Euclidean Spaces (In Russian). 
Nauka, Novosibirsk. 

Godunov, S. K., Antonov, A. G., Kiriljuk, 0. P., Kostin, V. I., 1993. Guar- 
anteed accuracy in numerical linear algebra. Kluwer Academic Publishers 
Group, Dordrecht, translated and revised from the 1988 Russian original. 

Golub, G. H., Loan, C. F. V., 1996. Matrix Computations, 3rd Edition. The 
Johns Hopkins University Press. 

Smith, B. T., Boyle, J. M., Dongarra, J. J., Garbow, B. S., Ikebe, Y., Klema, 
V. C., Moler, C. B., 1976. Matrix Eigensystem Routines - EISPACK Guide. 
Vol. 6 of Lecture Notes in Computer Science. Springer-Verlag, Berlin. 

Wilkinson, J. H., 1965. The Algebraic Eigenvalue Problem. Oxford University 
Press. 

13 


